La synthèse protéique 2ième étape : la traduction

Q1 : Proposer une définition de la traduction après avoir visionné la vidéo de cette deuxième étape de la synthèse protéique

• Cette étape nécessite de changer de langage car on doit passer d'une séquence de nucléotides à une séquence d'acides aminés

La cellule doit traduire en utilisant un code : le code génétique.

Q2 : Sachant que la cellule utilise 20 acides aminés différents pour élaborer ses protéines, par combien de nucléotides au minimum est portée l'information correspondant à un acide aminé ?

• Le code génétique est un tableau qui donne la correspondance entre les codons de l'ARN et les acides aminés

Il est commun à tous les êtres vivants : le code génétique est universel

Q3 : Observer le code génétique ci-dessous et indiquer deux autres caractéristiques

					De	uxième letti	re				
			U		С		Α		G		
	U	UUU UUC UUA UUG	Phe Phe Leu Leu	UCU UCC UCA UCG	Ser Ser Ser Ser	UAU UAC UAA UAG	Tyr Tyr Stop Stop	UGU UGC UGA UGG	Cys Cys Stop Trp	U C A G	
e lettre	С	CUU CUC CUA CUG	Leu Leu Leu Leu	CCU CCC CCA CCG	Pro Pro Pro Pro	CAU CAC CAA CAG	His His GIn GIn	CGU CGC CGA CGG	Arg Arg Arg Arg	U C A G	Troisième lettre
Première lettre	А	AUU AUC AUA AUG	lle lle lle Met	ACU ACC ACA ACG	Thr Thr Thr Thr	AAU AAC AAA AAG	Asn Asn Lys Lys	AGU AGC AGA AGG	Ser Ser Arg Arg	U C A G	ne lettre
	G	GUU GUC GUA GUG	Val Val Val Val	GCU GCC GCA GCG	Ala Ala Ala Ala	GAU GAC GAA GAG	Asp Asp Glu Glu	GGU GGC GGA GGG	Gly Gly Gly Gly	U C A G	

Q4 : Elaborer la protéine correspondant à cette partie de gène. Méthode : on élabore l'ARN à partir de l'ADN puis on utilise le code génétique pour déterminer la séquence d'acides aminés

ATGGTACACCTCACT TACCATGTGGAGTGA brin non transcrit brin transcrit

Exercice de bac :

Dans les neurones, la huntingtine favorise la transcription du gène codant un facteur de croissance des neurones du striatum : le BDNF (brain-derived neurotrophic factor).

1. La synthèse des protéines se réalise en deux étapes : la transcription et la traduction. Définir et localiser ces étapes au sein de la cellule.

2. A l'aide du document 10, déterminer la séquence en acides aminés correspondant à la séquence nucléotidique présentée ci-dessous . Expliquer la démarche suivie.

...GCCGCGACTATTCGTTGT... brin non transcrit

			Deuxlè	me base		
		U	С	Α	G	1
Première base	U	UUU] phénylalanine UUC] (phe) UUA] leucine UUG] (leu)	UCU UCC UCA Sérine (ser)	UAU tyrosine UAC (tyr) UAA non-sens UAG non-sens	UGU cystéine UGC (cys) UGA non-sens UGG tryptophane	U C A G
	C	CUU leucine CUA (leu)	CCU proline (pro)	CAU histidine CAC (his) CAA glutamine CAG (gln)	CGU arginine (arg)	U C A G
Premiè	A	AUU sisoleucine (ile) (ile) (méthionine (met)	ACU ACC thréonine (thr)	AAU asparagine AAC (asn) AAA lysine AAG (lys)	AGU sérine AGC (ser) AGA arginine AGG (arg)	A G U C A G
	G	GUU valine GUA (val) GUG	GCU alanine (ala)	GAU ac. aspartique GAC (asp) GAA ac. glutamique GAG (glu)	GGU GGC GGA (gly)	U C A G

Document 10 : le code génétique